选择
取消
首页
需求
视频
产品
专栏
招聘
活动
个人中心
首页
»
产品库
类别
▼
X
反向提锂机制实现高选择性的锂离子筛分
应用场景:资源回收
关键性能:特定电压(4.5 V)下可实现Mg²⁺和Ca²⁺的选择性传输(利用其高电荷迁移率),而Li⁺仍被完全阻挡,首次通过单一膜实现从复杂盐湖卤水中高效分离Li⁺
标签属性:资源回收
耐极端环境光热陶瓷纤维
膜材料
应用场景:工业高盐废水处理、海水淡化和紧急救灾
关键性能:该材料具备超90%的宽光谱吸收率和高效光热转换能力,展现出优异的化学稳定性与机械柔韧性,可在pH<1的强酸环境中连续运行30天,保持2.8 kg m-2h-1的稳定蒸发速率
标签属性:海水淡化
膜材料
高效盐水分离和净化技术
应用场景:污水净化和海水脱盐
关键性能:优化后的MoS2膜在多种测试条件下展现出优异的性能,如高水渗透性、高离子选择性以及良好的机械和化学稳定性
标签属性:
膜材料
有机无机复合膜叠层结构设计方法
应用场景:静电薄膜电容器
关键性能:三层结构的0-0.75-0纳米复合材料实现了最高放电能量密度为7.7 J cm⁻³,充放电效率为80.2 %
标签属性:
膜材料
仿生氮化碳膜实现高选择性锂镁分离
应用场景:高镁锂比盐湖高效稳定提锂
关键性能:复合膜在锂镁分离中表现出色,可从高浓度Mg2+中筛出极低浓度的Li+,且选择比达1708
标签属性:
膜材料
孔径小于10纳米的固态纳米孔制备新方法
应用场景:固态纳米孔制备
关键性能:改变重离子的电子能损调控孔径大小,改变重离子辐照注量调节孔密度,使得整个制孔过程一步完成,不涉及化学蚀刻,具有一定的普适性和应用潜力
标签属性:纳米制备
仿生膜化人工细胞
应用场景:人工细胞
关键性能:实现了凝聚液滴表面功能化
标签属性:
膜材料
大载流、高导电碳纳米管复合薄膜
应用场景:高功率电子器件、大电流传输
关键性能:CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m
标签属性:薄膜
邻域纳米结构生物传感膜
应用场景:葡萄糖检测和实时连续监测
关键性能:新型传感膜的灵敏度高达31.2 μA mM-1,可稳定连续监测蔗汁中的葡萄糖浓度长达8小时无电流响应漂移。
标签属性:
膜材料
在介质衬底上黑磷及其合金的高质量单晶薄膜制备
应用场景:新型光电子器件
关键性能:黑磷薄膜单晶晶畴尺寸达到亚厘米级。所生长的黑磷单晶薄膜的XRD (004)衍射峰的半峰宽仅为0.08°
标签属性:黑磷
极耐温电容储能薄
膜材料
应用场景:薄膜电容器
关键性能:在250 ℃极端温度下,充放电效率在90%以上的能量密度达到2.1J/cm3,为目前报道最高水平
标签属性:薄膜
离子传输膜
应用场景:清洁能源
关键性能:在快速充电水溶性有机氧化还原液流电池中具有高效能量效率和高容量利用率的高效膜,同时在极高的电流密度(高达500 mA cm–2)下避免了交叉渗透引起的容量衰减
标签属性:
膜材料
有机硅改性的疏水自润滑柔性电热防/除冰薄膜
应用场景:飞机、风电领域防除冰
关键性能:该类型疏水自润滑电热贴膜材料具有优异的防/除冰效果
标签属性:薄膜 疏水
3D多孔结构的介电/聚合物复合薄
膜材料
应用场景:辐射制冷
关键性能:低于环境温度~9.1°C的降温效果和~87.2 W/m2的冷却功率
标签属性:薄膜
双面对称结晶取向共价有机框架薄膜
应用场景:晶态柔性薄膜材料
关键性能:实现COF薄膜整体性的面内取向生长和排列,同时也保持了薄膜的结晶度、孔隙率、机械强度和可调厚度
标签属性:
膜材料
稳定制氢离子传导膜的新型制备技术
应用场景:为工业副产氢提纯、固体氧化物燃料电池/电解池及氧传感器等提供技术支撑
关键性能:H2、CH4、CO2、H2S、H2O气氛下连续稳定运行超过1000个小时,展现出优异的稳定性和制氢性能
标签属性:膜 燃料电池
低能耗、无废弃物排放的纳米纤维素生产工艺
应用场景:光学涂层、防伪和传感
关键性能:开发了基于2,3-环氧丙基三甲基氯化铵和尿素的反应型低共熔溶剂体系(DES),实现了低能耗、无废弃物排放的纳米纤维素生产工艺,并得到了一系列新型的纤维素功能材料
标签属性:纤维素
一种三(羟丙基)膦共价改性羟基化多壁碳纳米管作为先进锂硫电池的功能层
应用场景:锂硫电池
关键性能:有效抑制多硫化物穿梭效应
标签属性:锂硫电池 催化转化
稳定连接共价有机框架纳滤膜
应用场景:COFs
关键性能:QL-COF膜对分子尺寸大于其孔径1.4 nm的有机分子均可实现99%以上的截留率;QL-COF纳滤膜性能稳定且能够耐酸耐碱
标签属性:纳滤膜 COFs
自组装单分子层COF膜
应用场景:盐差能转化材料
关键性能:将盐差能转化的输出功率密度提高至135 Wm-2。进一步,研究通过调控COF框架中卟啉分子的金属中心,可实现真实海水/河水盐差梯度下高于300 Wm-2的输出功率密度
标签属性:COF
1
/3页
首页
前页
后页
末页
Copyright © 2011 - 2020 cailiaoren.com. All rights reserved.
京ICP备16046932号-2
京公网安备11010802029412号